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Abstract We have investigated computationally the effects
of π-conjugation extension on naphtha[2,1-b:6,5-b’]
difuran (DPNDF); where we increase the number of fused
NDF (central core) and furan rings in the parent molecule.
The molecular structures of all analogues have been opti-
mized at the ground (S0) and first excited (S1) states using
density functional theory (DFT) and time-dependent den-
sity functional theory (TD-DFT), respectively. Then
highest occupied molecular orbitals (HOMOs), the lowest
unoccupied molecular orbitals (LUMOs), photophysical
properties, adiabatic/vertical electron affinities (EAa)/
(EAv), adiabatic/vertical ionization potentials (IPa)/(IPv),
and hole/electron reorganization energies λh/λe have been
investigated. The effect of NDF and furan rings on struc-
tural and electro-optical properties has also been studied.
Our calculated reorganization energies of 1a, 1b, and 2c
reveal them, materials with balanced hole/electron charge

transport, whereas 2a and 2b are good hole-transport ma-
terials. By increasing the number of furan rings; the
photostability was augmented in 2a, 2b, and 2c.

Keywords Electro-optical properties . Hetero-cyclic
conjugation . Organic semiconductor materials . Electronic
materials

Introduction

π-conjugation contributes a considerable role in designing the
structural, optoelectronic, and charge transfer properties of
organic semiconductor materials (OSMs) [1–6]. For the past
decades, significant attention has been dedicated to the con-
struction of π-conjugated novel systems [7–13] due to their
potential applications in optoelectronics devices. π-
conjugated OSMs are of immense interest for experimental
and theoretical researchers due to their bendable displays, low
fabrication cost, low weight and flexible substrates [14–22].
These give organic materials (OMs) a huge advantage over
conventional inorganic silicon-based transistors for semicon-
ducting behavior. Since first reported in 1986 OSMs are
intensively investigated for their applications in optoelectronic
devices and microelectronics, such as organic field-effect
transistors (OFETs) [23–27], organic light-emitting transistors
(OLETs) [28], organic light-emitting diodes (OLEDs) [29–31]
and organic photo-voltaic devices (OPVs) [30, 32, 33].

In OSMs, many experimental and theoretical researchers
had focused on thiophene [34–50] containing OMs as com-
pared to furan containing OMs [51–54] for use in OFETs and
OLEDs. During the last few years more attention has been
given to furan as basic building block for organic π-
conjugated materials, because furan containing OMs are more
stable and potentially applicable in OFETs and OLEDs [55,
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56, 28, 57–60]. Binaphtha-furanyl has been reported to be a
good OLETs [28] material and furan based materials were
considered by the same researchers to have great potential as a
versatile organic semiconductor, especially in light of their
distinct photophysical properties in solid state compared to
their thiophene counterpart, making them a newmaterial class
applicable to OFET, OLETs and OPVs. Recently naphtha[2,1-
b:6,5-b’]difuran (DPNDF) and its derivative were experimen-
tally synthesized for solution-processed single-crystal OFET
with high holemobility [61]. The effect of the furan rings inπ-
conjugation organic electronic materials was experimentally
and theoretically studied in relation to their electrochemical
and optical properties and concluded; these new compounds
present consistent electronic properties compatible for appli-
cation in organic electronics [11]. Naphthalimide-fused deriv-
atives have been synthesized and characterized for n-type and
ambipolar charge transport materials in OFET [62]. The in-
fluence of conjugation on electronic and structural properties
has been studied experimentally as well as theoretically. In our
previous study [63], it was found that the furan may be a good
electron transport material with very low reorganization ener-
gy for electron λ(e). Moreover using the experimental crystal
of DPNDF [61] as a starting point we studied the effect of
electron withdrawing groups (EWGs) [64, 65] and heteroatom
substitution [66]. The influence of push-pull strategies has
been studied as well [67].

In the present study we extend our work to investigate the
effects of π-conjugation elongation on the structural, electron-
ic, photophysical, and charge transfer properties. For this
purpose five new derivatives were designed from the same
parent molecule of DPNDF [61] by increasing the number of
naphtha-difuran (NDF); named as 1a and 1b, respectively,
where we increase the number of fused NDF rings (central
core) in the parent molecule. For 2a, 2b, and 2c the number of
furan rings have been increased; see Fig. 1 for schematic
diagram of derived systems.

We optimized the geometries of these structures at both
ground and excited states and compared the results to see the
effect of conjugation length on the molecular structures.
Along with the comparative study, the structural, electronic,
photophysical, and charge transfer properties of these ana-
logues such as highest occupied molecular orbitals (EHOMO),
lowest unoccupied molecular orbitals (ELUMO), HOMO-
LUMO energy gap (Eg), reorganization energies for hole
(λh) and electron (λe), ionization potentials (IPs), and electron
affinities (EAs) have been calculated by computational
methods and discussed in detail. Photostability has been
discussed on the bases of molecular electrostatic poten-
tials (MEP). The computational results of these ana-
logues have been compared with experimental data
where available.

Computational details

Density functional theory (DFT) has been used to optimize the
initial molecular structures at the ground states (S0) by apply-
ing the hybrid exchange correlation functional B3LYP [68,
69] with 6-31G** basis sets [70–72]. For excited states (S1)
time-dependent density functional theory (TD-DFT) through
the hybrid functional TD-B3LYP [73–78] with the same basis
set was used to optimize the geometries of all the derivatives.
Electronic, photophysical properties including wavelengths of
maximum absorption (λabs) and emission (λemis) have been
calculated at the same level of theory.

The reorganization energy (λ) represents the geometric
relaxation energy of a molecule from charged to the neutral
state [79, 80], and from the neutral to charged state. These two
terms are calculated directly from the adiabatic potential

Fig. 1 Schematic diagram of derivatives with labeling

Table 1 Calculated optimized bond lengths (Å) and bond/dihedral
angles in degree at the B3LYP/6-31G** and TD-B3LYP/6-31G** levels
of theory at ground (S0) state and excited (S1) state (in brackets)

Bond lengths 1a 1b 2a 2b 2c

O-C 1.39
(1.39)

1.39
(1.38)

1.39
(1.39)

1.39
(1.39)

1.39
(1.39)

C-O 1.37
(1.36)

1.37
(1.37)

1.37
(1.39)

1.37
(1.39)

1.37
(1.39)

NDF-phenyl 1.45
(1.44)

1.45
(1.45)

1.45
(1.43)

1.45
(1.44)

1.45
(1.44)

C-O-C 106.84
(107.04)

106.84
(106.97)

105.79
(105.77)

105.86
(105.84)

105.87
(105.88)

O-C-C 116.64
(117.06)

116.65
(116.85)

116.51
(116.95)

116.36
(116.77)

116.36
(116.08)

C-O-C-C 179.99
(179.99)

179.99
(179.99)

179.99
(179.99)

180.00
(180.00)

179.97
(180.00)

O-C-C-C 179.89
(179.96)

179.94
(179.97)

179.99
(179.98)

179.96
(179.97)

179.92
(179.96)
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energy surfaces for λh and λe [81–83]. The reorganization
energy for hole (λh) was evaluated as:

λh ¼ E1 Rð Þþ−E cationð Þ� �þ E1 Rð Þ−E neutralð Þ� � ð1Þ

E1(R) is the energy of neutral at the optimized charged
(cation) species, and E1(R)+ is energy of the charge (cation) at
the geometry of the optimized neutral species.

The reorganization energy for electron (λe) was evaluated
as:

λe ¼ E1 Rð Þ−−E anionð Þ� �þ E1 Rð Þ−E neutralð Þ� �
; ð2Þ

E1(R) is the energy of neutral molecule at the geometry of
the optimized charged (anion) species, and E1(R)− is energy of
the charged (anion) species at the geometry of the optimized
neutral species. These reorganization energies for hole as well
as electron were calculated using B3LYP/6-31G** level of
theory for all the derivatives.

The IPs and EAs can be either for adiabatic excitations (a),
optimized structure for both the neutral and charge molecule
or vertical excitation (v), at the geometry of the neutral mol-
ecule. The adiabatic and vertical ionization potential (IPa and
IPv); electron affinity (EAa and EAv) have been calculated at
the B3LYP/6-31G** level of theory as follows:

IPa ¼ E cationð Þ−E neutralð Þand
IPv ¼ E1 Rð Þþ−E neutralð Þ

ð3Þ

EAa ¼ E neutralð Þ−E anionð Þ and
EAv ¼ E neutralð Þ−E1 Rð Þ−;

ð4Þ

where E1(R)+ and E1(R)− correspond to the energies of
charged (cation and anion) states at the optimized geometry

1b

1a

2a

2b

2c

HOMOs LUMOs

Fig. 2 Distribution patterns of
HOMOs and LUMOs at ground
state for all derivatives
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of the neutral molecule, respectively. All first-principles cal-
culations were carried out using Gaussian 09 package [84].

Results and discussion

Ground and excited states geometries

The optimized bond lengths and bond/dihedral angles for the
investigated derivatives at ground S0 and excited S1 states (in
brackets) have been tabulated in Table 1, respectively. As
shown in Table 1 from ground S0 to excited S1 state, the bond

1b

1a

2a

2b

2c

HOMOs LUMOs

Fig. 3 Distribution patterns of
HOMOs and LUMOs at excited
state for all derivatives

Table 2 The EHOMO, ELUMO, and Eg for S0 states/S1 states (in the
brackets) at the B3LYP/6-31G** and TD-B3LYP/6-31G** levels of
theory

1a 1b 2a 2b 2c

EHOMO (eV)a −4.99
(−4.81)

−4.96
(−4.80)

−4.93
(−4.74)

−4.82
(−4.65)

−4.75
(−4.58)

ELUMO (eV) −1.67
(−1.87)

−1.78
(−1.96)

−1.66
(−1.88)

−1.72
(−1.92)

−1.79
(−1.97)

Eg (eV) 3.32
(2.94)

3.18
(2.84)

3.27
(2.87)

3.10
(2.73)

2.96
(2.61)

a : Computed values for comparison from ref. [65]
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lengths and bond/dihedral angles have not increased or de-
creased significantly. All the derivatives are densely packed,
which restrict the bond lengths and bond/dihedral angles from
shortening and lengthening.

Electronic properties

Frontier molecular orbitals (ground and excited states)

The distribution patterns of HOMOs and LUMOs for all the
molecules at ground (S0) and excited (S1) states are shown in
Fig. 2 and Fig. 3, respectively; evaluated at B3LYP/6-31G**
and TD-B3LYP/6-31G** levels of theory. At S0 state for 1a,
1b, 2a, 2b, and 2c the HOMO formation has been following
the same trend as the charge delocalized on all backbone,
whereas charge is localized (lone-pair) on the outer phenyl
ring. The oxygen atoms are not taking part in formation of
HOMO. For LUMO formation the delocalization of charge has
been found on the central core for all molecules. The charge
has been localized on all oxygen atoms. All themolecules have
been found with similar patterns of the LUMO formation.

At S1 state, in the formation of HOMO, it was found that
the charge has been delocalized on all backbone; the oxygen
atoms are not involved in formation of HOMO. For LUMO
formation all the derivatives have been found with similar
patterns of the LUMO formation, where the charge has been
delocalized on the central NDF and furan rings for all the
molecules.

The energies of HOMOs (EHOMO), LUMOs (ELUMO), and
HOMO-LUMO energy gaps (Eg) at ground states for all the
molecules have been tabulated in Table 2. The graphical
representation of EHOMO and ELUMO is shown in Fig. 4 (left)
for more clear understanding of the Eg at ground state. The
EHOMO of studied molecules 1a, 1b, 2a, 2b, and 2c are −4.99,
−4.96, −4.93, −4.82, and −4.75 eV, respectively. The trend of
EHOMO is 1a (−4.99 eV)<1b (−4.96 eV)<2a (−4.93 eV)<2b
(−4.82 eV)<2c (−4.75 eV) and of ELUMO is 2c (−1.79 eV)>
1b (−1.78 eV)>2b (−1.72 eV)>1a (−1.67 eV)>2a
(−1.66 eV). The computed EHOMO of all the molecules has
been decreased as compared to the experimental value [61] of
parent molecule DPNDF, and are in a healthy agreement with
the computed values of EHOMO (−5.10 eV) [65] of the same
molecule DPNDF. Similarly the ELUMO for all the molecules
has been decreased as compared to the already computed
value of parent molecule [65].

The trend in the Eg is 1a (3.32 eV)>2a (3.27 eV)>1b
(3.18 eV)>2b (3.10 eV)>2c (2.96 eV). It can be seen from
Table 2 that the ELUMO has been enhanced by increasing the
number of NDF and furan rings in the parent molecule which
would increase the electron injection barrier resulting in re-
duced electron injection. It is expected that new molecules
might be good hole transport materials.

The EHOMO, ELUMO, and Eg at excited states for all the
molecules have been presented in Table 2 (in the bracket). The
graphical comparison of EHOMO and ELUMO is given in Fig. 4
(right) for more clear representation of Eg. The trend of

Fig. 4 Comparison of EHOMO

and ELUMO for ground (S0) state
(left)/excited (S1) state (right) at
the B3LYP/6-31G** and TD-
B3LYP/6-31G** levels of theory

Table 3 Calculated wavelengths in nm for maximum absorption (λabs), emission (λemis), oscillator strength (ƒ), and contribution of HOMO to LUMO
for S0 and S1 states

a

λabs ƒ Contribution λemis ƒ Contribution

1a 420 1.56 HOMO→LUMO (98 %) 469 1.69 HOMO→LUMO (99 %)

1b 443 2.06 HOMO→LUMO (97 %) 494 2.16 HOMO→LUMO (99 %)

2a 422 1.22 HOMO→LUMO (99 %) 474 1.32 HOMO→LUMO (100 %)

2b 445 1.80 HOMO→LUMO (99 %) 500 1.94 HOMO→LUMO (100 %)

2c 468 2.03 HOMO→LUMO (99 %) 526 2.17 HOMO→LUMO (100 %)

a : Computed values (λabs=381 nm; λemis=427 nm) for comparison with ref. [65]
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EHOMO is 1a (−4.81 eV)>1b (−4.80 eV)>2a (−4.74 eV)>2b
(−4.65 eV)>2c (−4.58 eV), respectively. The trend of ELUMO

is 2c (−1.97 eV)>1b (−1.96 eV)>2b (−1.92 eV)>2a
(−1.88 eV)>1a (−1.87 eV), respectively, whereas the trend
in the Eg is 1a (2.94 eV)>2a (2.87 eV)>1b (2.84 eV)>2b
(2.73 eV)>2c (2.61 eV). It has been observed that EHOMO and
ELUMO have been reduced with increase in the number of
NDF and furan rings. So we predict the red shifted emission
wavelengths for all the molecules.

Photophysical properties

Oscillator strengths (ƒ), λabs, λemis, and HOMO-LUMO con-
tribution have been evaluated and tabulated in Table 3. The
computed absorption and emission spectra, at the TD-DFT
level are graphically shown in Fig. 5 (a) and (b), respectively.
Table 3 shows the maximum HOMO→LUMO contribution
at the ground states (S0). The major contribution at ground
state for 1a is HOMO→LUMO (98 %) while for 1b is from
HOMO→LUMO (97 %), whereas for 2a, 2b, and 2c is from
HOMO→LUMO (100 %). Similarly the maximum contribu-
tion of HOMOs to LUMOs for excited states is from HO-
MO→LUMO (99%) for 1a and 1b, whereas fromHOMO→
LUMO (100 %) for 2a, 2b, and 2c. The λabs have the red shift
of 39 nm, 62 nm, 41 nm, 64 nm, and 87 nm for 1a, 1b, 2a, 2b,
and 2c, respectively, whereas the λemis also have the red shift
of 42 nm, 67 nm, 47 nm, 73 nm, and 99 nm for 1a, 1b, 2a, 2b,
and 2c, respectively as compared to the parent molecule of
DPNDF [65]. The emission wavelengths have been amplified
toward red shift for all the molecules with increase in the NDF
and furan rings in the central core of DPNDF as compared to
the computed values of parent molecule DPNDF [65]. Struc-
ture–property relationship revealed that by enlarging the cen-
tral core, the λabs and the λemis have shown red shifted behav-
ior for 1a, 1b, 2a, 2b, and 2c as shown in Fig. 5.

Charge transfer properties

Electron affinity (EA) and ionization potential (IP) are the
most important properties to calculate the charge injection

barriers, which have been evaluated at the B3LYP/6-31G**
level. The adiabatic/vertical IP (IPa/IPv) and adiabatic/vertical
EA (EAa/EAv) of these molecules have been calculated and
tabulated in Table 4. A graphical comparison of the IPv χð Þ
and EAv has been drawn in Fig. 6 (left) to represent the results
more clearly. In organic semiconductor materials increasing
the injection ability for hole and electron lower IP and higher
EA is very crucial. In OFETs the organic materials having
high EAv might be better for n-type and of small IPv might
favor p-type charge injection [85]. From Table 4 it is clear that
1a, 1b, 2a, 2b, and 2c have the EAv 0.66, 0.88, 0.53, 0.69, and
0.82 eV, respectively, which are higher than that of DPNDF
[65] computed at the same level of theory. The EAv follow the
same trend as for ELUMO for all molecules as it has been
observed that the molecule with high LUMO energy has the
higher EAv. It can be seen from Table 4 that EAv for studied
systems improved by increasing the number of NDF and furan
rings in the central core of parent molecule DPNDF.

The reorganization energy is the quantity which is most
important for estimating the ability to carry the charge in
solids [86, 87]. The reorganization energies at the B3LYP/6-
31G** level for electron λ (e) and for hole λ (h) have been
given in Table 4. A graphical representation of hole λ (h) and λ
(e) has been given in Fig. 6 (right) at the same level of theory
to reveal the tendencymore clearly. The calculated λ (h) of the
2a (0.17 eV) at B3LYP/6-31G** level of theory is in good
agreement with previously computed value for the parent

Fig. 5 (a) computed absorption
spectra (b) computed emission
spectra, at the TD-DFT level

Table 4 The vertical/adiabatic ionization potential and electron affinity,
the reorganization energy for hole λ(h) and for electron λ(e) at the
B3LYP/6-31G** level of theory. All values in eV

1a 1b 2a 2b 2c

IP (vertical) 6.05 5.88 6.10 5.89 5.75

IP (adiabatic) 5.89 5.82 6.01 5.81 5.68

EA (vertical) 0.66 0.88 0.53 0.69 0.82

EA (adiabatic) 0.73 0.94 0.63 0.78 0.90

λ(h) 0.14 0.10 0.17 0.16 0.15

λ(e) 0.16 0.12 0.20 0.19 0.17
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molecule DPNDF [61]. Moreover, the computed λ (h) is
slightly smaller than λ (e) for all the molecules revealing that
they would be better as hole transfer material while giving
good agreement with the finding of reference [61]. From
Table 4 it is clear that 1a, 1b, and 2c have almost balanced λ
(h) and λ (e), so theymight be good candidates for hole as well
as electron transport materials whereas the molecules 2a and
2b have the λ(h) (0.17 and 0.16 eV), which is lower than λ(e)
(0.20 and 0.19 eV), respectively. It is predicted that 1a, 1b,
and 2c are better for hole as well as electron transport whereas
2a and 2b are good hole-transport materials, respectively. The
λ(h) for 1a, 1b, 2a, 2b, and 2c have been evaluated as 0.14,
0.10, 0.17, 0.16, and 0.15 eV, respectively, at the B3LYP/6-
31G** level. These values of λ (h) for all molecules are
smaller than that of thiophene based analogue DPNDT
(0.19 eV) [88], α-oligofurans (0.23 eV) [89] and naphtho-
dithiophene 0.25 eV [90], hence supporting our prediction that
these materials would be better as hole carrier transporter than
DPNDT, α-oligofurans and naphtho-dithiophene. Moreover,
the values λ(e) for all 1a, 1b, 2a, 2b, and 2c have been
evaluated as 0.16, 0.12, 0.20, 0.19, and 0.17 eV, respectively,
which are smaller than naphtho-dithiophene 0.34 eV [90] and
oligofuran 0.40 eV [89], revealed that the new designed
molecules might be efficient as electron transporter as com-
pared to the naphtho-dithiophene and oligofuran.

Molecular electrostatic potentials

Molecular electrostatic potentials (MEP) have been mapped
for all molecules as shown in Fig. 7. Higher negative and
positive potential regions are shown in pink and green colors,
respectively. The maximum negative regions are favorable for
electrophilic attack, whereas maximum positive regions are
favorable for nucleophilic attack. The MEP is a real physical
observable property, that can be attained experimentally by
diffraction methods [91, 92] as well as computationally. MEP
represents the complete nuclear and electronic charge distri-
bution of a molecule and is a very useful property to study the
reactivity of the given molecule [93–95]. We observed that in

all the molecules the high negative potential is distributed on
oxygen atoms only, which might be due to the presence of

Fig. 6 Graphical representation
of IPv and EAv (left); λ(h) and
λ(e) (right) calculated at the
B3LYP/6-31G** level of theory

Fig. 7 Molecular electrostatic potential distributions of all the derivatives
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lone pairs on oxygen atoms (see Fig. 7). By increasing the
number of furan rings; the MEP have been augmented in 2a,
2b, and 2c. Previously, the photostability of organic materials
was explained on the basis of MEP [96]. Recently, we pointed
out that greater negative potential distributed on the system
would enhance the photostability [97]. The higher negative
electrostatic potential distribution on the surface will make the
oxidation more difficult and resist against the degradation of
the molecule (due to the oxidation and photoreactions) [96,
97]. Higher negative electrostatic potential in 2a, 2b, and 2c
would decrease the oxidation resulting in the development of
photostability which is in good agreement with our previous
study.

Conclusions

The HOMOs and LUMOs in all the studied molecules have
been delocalized as well as localized throughout the back-
bone. The EHOMO of all molecules were decreased as com-
pared to the experimental values. By increasing the NDF and
furan rings in the central core of the parent molecule, the
HOMO energies of all the studied systems have been reduced.
The wavelengths of maximum absorption and emission
showed the red shifted behavior for all the molecules as
compared to the computed value of parent molecule DPNDF.
The vertical electron affinity for these molecules was im-
proved by increasing the number of NDF and furan rings in
the central core of parent molecule DPNDF. In terms of
reorganization energies 1a, 1b, and 2c may be material with
balanced hole/electron charge transport. It is predicted that
they are better for hole as well as electron transport whereas 2a
and 2b are good hole-transport materials. By increasing the
number of furan rings, the photostability is augmented in 2a,
2b, and 2c. It is predicted that increasing the number of NDF
and furan rings in furan based materials might improve the
charge injection in all studied systems. It is expected that these
materials would be better as OFETs, OLETs, and OLEDs.
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